If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16d^2+36d-8=0
a = -16; b = 36; c = -8;
Δ = b2-4ac
Δ = 362-4·(-16)·(-8)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-28}{2*-16}=\frac{-64}{-32} =+2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+28}{2*-16}=\frac{-8}{-32} =1/4 $
| p-2=3.4 | | -3y+-6.1=3.5 | | 0.2(36-24x)=0.6(9-6x) | | 7.1=2.3+x | | 5(3b-2)=4 | | y=-2+8(1) | | 15=(2m/5)+7 | | 0.5(x+4)+25x=8 | | 16x-13=166 | | 36=16x+x2 | | 7x×8x=(10x-2)×(5x+3) | | 3g-9-g=15 | | 1.7=5.7-0.5x | | 3-9y=-60 | | X*2x+5=75 | | 3.75-x/(.5+2x)^2=164 | | 7/10n+3/2=3/2n+2 | | 7x+12=4x+7+2x+23 | | y=y+8(0)=-2 | | 7(x+3)=3(x+8) | | 56÷m=8 | | 5x+2x−15=97 | | X+8=5x-19 | | y=1+8(0)-2 | | 1/5(3r)=2/5 | | -4(x+8)=-12 | | 63.7=13.35+x | | 9+8d=15 | | 65.1=13.35+17.25x | | X+x÷4+x+7=74 | | .5b+3b=15 | | 0.50n+0.50n+n=180 |